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Supplementary Figures 
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Supplementary Figure S1: Structural properties. (a) XRD patterns of the multilayer 

samples: Pt(3)/[FeMn(0.6)/Pt(0.6)]20 (Curve A) and [FeMn(0.6)/Pt(0.6)]20 (Curve B), 

covering the range of bulk fcc Pt (111) peak at 39.8° and bulk fcc FeMn (111) peak at 43.5°, 

using the Cu Kα radiation. Inset of (a): intensity difference between A and B (A-B). (b-d) 

XPS spectra of the Pt(3)/[FeMn(0.6)/Pt(0.6)]20 sample. 
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Supplementary Figure S2: Layer thickness and periodicity dependence of magnetic 

properties. (a) TC and Ms (at 50 K) as a function of t2 for (0.6, t2)×5 samples. (b) TC and Ms 

(at 50 K) as a function of t1 for (t1, 0.4)×5 samples. (c) TC and Ms (at 50 K) as a function of n 

for (0.6, 0.6)×n samples. All the data are extracted from the M-T curves in Fig. 1b,c,d of the 

main text. The legend (t1, t2)×n denotes a multilayer with a FeMn thickness of t1, Pt thickness 

of t2, and a period of n. (d) ZFC (in red) and FC (in blue) curves for 

Pt(3)/[FeMn(0.6)/Pt(0.6)]5, measured from 10 K to 380 K with an in-plane field of 100 Oe. 
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Supplementary Figure S3: Comparison of M-H curves between FeMn(3)/Au(3) and 

FeMn(3)/Pt(3) bilayers. The magnetic moment of both samples was measured by sweeping 

an in-plane field from -3 T to +3 T. The magnetization (Ms) is obtained by dividing the total 

moment over the volume of FeMn layer, and then plotted against the sweeping field. The 

difference in magnetization between two samples is negligible.   
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Supplementary Figure S4: Experimental (open circle) and fitted (solid line) M-T curves. 

The experimental dada are the same as those shown in Fig. 1 of the main text. Fitting is 

performed using Supplementary Equation (S9), and the fitting parameters are listed in 

Supplementary Table S1. 
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Supplementary Figure S5: Experimental (open circle) and fitted (solid line) M-T curves. 

The experimental dada are the same as those shown in Fig. 1 of the main text. Fitting is 

performed using Supplementary Equation (S10), and the fitting parameters are listed in 

Supplementary Table S2 with  = 0.365 for all the fittings. 
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Supplementary Figure S6: Low-temperature MR of Pt(3)/[FeMn(0.6)/Pt(0.6)]5/Ta(3). 

Magnetoresistance measured by sweeping the field in longitudinal direction at different 

temperature with a bias current of 1 mA. Note that all but the curve at 50 K are vertically 

shifted for clarity.            
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Supplementary Figure S7: Simulated “W” shape MR curve. Simulated MR ratio of 

multilayer sample as a function of sweeping field in z-direction with Hk = 1 Oe and different 

angle χ (-30o, -45o, -90o). Parameters used are given in Supplementary Note S4. The 

simulated MR curve resembles well the experimentally observed curves. 
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Supplementary Figure S8: Current sweeping PHR curves under a bias field in y-

direction. (a) Current sweeping PHR curves under different applied fields in y-direction for 

the Pt(1)/[FeMn(0.6)/Pt(0.6)]6/Ta(3)/SiO2/Si sample. (b,c) PHE cures obtained by a half 

cycle positive current sweeping from 0 to 30 mA and then back to 0 (b), followed by same 

sequence of sweeting consecutively (c). (d,e) PHE cures obtained by a half cycle negative 

current sweeping from 0 to -30 mA and then back to 0 (d), followed by same sequence of 

sweeting consecutively (e). 
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Supplementary Figure S9: Simulated current sweeping curve. Simulated PHR as a 

function of current density in the multilayer using energy minimization. Parameters used are: 

Hk = 1 Oe, α = -10° and HFL/jmul = 1×10-6 Oe/(A/cm2). The simulated PHR curve resembles 

well the experimentally observed curves. 
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Supplementary Figure S10: Extraction of HFL. (a) Illustration of second order PHE 

measurement with a transverse bias field. (b) One set of PHE curves at 10 mA bias current 

with different transverse bias field (0, +0.5 and -0.5 Oe). (c) Linear fitting of ΔV (Hbias = 0 Oe) 

against [ΔV (Hbias = 0.5 Oe) - ΔV (Hbias = -0.5 Oe)] to determine the ratio of the current-

induced field to the applied bias field.  

 

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

E
ff

e
c
ti
v
e
 f

ie
ld

 (
O

e
)

jmul (106A/cm2)

(0.6,0.6)x5

(0,8,0.4)x5

(0.6,0.2)x5

(0.6,0.4)x5

 

Supplementary Figure S11: HFL extracted by second order PHE method. HFL as a 

function of current density for Pt(1)/[FeMn(t1)/Pt(t2)]5 multilayers, with the legend denoting 

(t1, t2) × n. 
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Supplementary Figure S12: θSH and Ms distribution. Schematic θSH (upper panel) and Ms 

(bottom panel) profiles along the thickness direction for FeMn/Pt multilayers.  
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Supplementary Tables 

 

Supplementary Table S1. Fitting parameters for M-T curves

Sample

Structure
M(0) 

(emu/cm3)
s β Tc (K)

(0.6, 1)×5 765 0.06 0.86 262

(0.6, 0.6)×5 804 0.1 0.9 350

(0.6, 0.4)×5 725 0.4 0.68 357

(0.6, 0.2)×5 650 0.3 0.8 415

(0.6, 0.1)×5 600 0.26 0.8 386

(0.6, 0)×5 335 0.2 0.9 270

(0.8, 0.4)×5 570 0.1 0.68 358

(1, 0.4)×5 500 0.05 0.8 362

(0.6, 0.6)×3 598 0.06 0.7 282

(0.6, 0.6)×4 795 0.15 0.85 320

(0.6, 0.6)×10 795 0.06 0.7 357
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Supplementary Table S2. Fitting parameters for M-T curves

Sample

Structure
M(0) 

(emu/cm3)
s TC0 (K) TC (K)

(0.6, 1)×5 790 1.3 245 24

(0.6, 0.6)×5 822 1.35 322 30

(0.6, 0.4)×5 742 1.55 345 27

(0.6, 0.2)×5 675 1.7 400 44

(0.6, 0.1)×5 610 1.15 362 57

(0.6, 0)×5 338 0.9 242 40

(0.8, 0.4)×5 595 1.3 345 25

(1, 0.4)×5 515 1.15 337 37

(0.6, 0.6)×3 610 1.2 274 16

(0.6, 0.6)×4 823 1.5 300 25

(0.6, 0.6)×10 804 0.77 339 36
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Supplementary Note S1: Structural properties  

Supplementary Figure S1a shows the XRD patterns of two coupon films: 

Pt(3)/[FeMn(0.6)/Pt(0.6)]20 (Curve A) and [FeMn(0.6)/Pt(0.6)]20 (Curve B), covering the 

range of bulk fcc Pt (111) peak at 39.8° and bulk fcc FeMn (111) peak at 43.5°, using the Cu 

Kα radiation. Multilayers with a larger number of periods were used in order to ensure a 

reasonably good signal-to-noise ratio. The diffraction patterns for both films are dominated 

by a main peak at 40.2° - 40.3°, which is close to the bulk Pt (111) peak. The difference in 

the intensity of the two diffraction patterns (inset of Supplementary Fig. S1a), i.e., A-B, 

should be the contribution from the top Pt(3) layer of sample A. As can be seen from the inset, 

the peak position of the Pt(3) capping layer, 39.9o, is very close to that of the bulk Pt. The 

shift of the main peak of the multilayer from the bulk value indicates the presence of 

intermixing at Pt/FeMn interfaces. Same phenomenon has also been observed in Co/Pt 

multilayers1,2. The FeMn (111) peak is almost at the same level of the baseline, which is 

presumably caused by the combined effect of ultrathin thickness, interface mixing and small 

scattering cross sections of Fe and Mn as compared to Pt. Supplementary Figure S1b,c,d 

shows the XPS spectra of the Pt(3)/[FeMn(0.6)/Pt(0.6)]20 sample whose XRD pattern is 

shown in Supplementary Fig. S1a. The Pt 4f7/2 and Pt 4f5/2 peaks appear to remain at their 

elemental positions without any obvious shift, while the Fe 2p3/2 and Mn 2p3/2 show both 

broadening and a blue-shift compared to their elemental peaks. The latter is presumably 

caused by interaction with Pt at interfaces. Oxidation of Fe and Mn is unlikely because the 

sample is covered by a 3 nm thick Pt layer. The XRD and XPS data demonstrate that the 

multilayers have a reasonably good (111) texture and sharp interfaces.  
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Supplementary Note S2: Ferromagnetic ordering of multilayers 

First, we have observed clear hysteresis and magnetization saturation in M-H curves below 

their respective Curie temperatures for all the samples which exhibit ferromagnetic properties 

(e.g., Fig.1a for the t1 = t2 = 0.6 nm sample). Second, ferromagnetic ordering is also 

demonstrated clearly in the zero-field cooled (ZFC) and field cooled (FC) M-T curves. As an 

example, Supplementary Fig.S2d shows the ZFC and FC curves for the (0.6, 0.6)×5 

multilayer. The FC magnetization is almost constant below 150 K and decreases gradually to 

zero after exceeding the Curie temperature (TC), which is about 357 K for this sample. On the 

other hand, the ZFC magnetization is low at low temperature, increases sharply at about 90 K, 

beyond which it overlaps with the FC curve. The FC and ZFC curves can be readily 

understood as the typical behaviour of a ferromagnet with a finite TC distribution (see the 

third point below). When the sample is zero-field cooled from 380 K which is higher than TC 

of this sample, ferromagnetic ordering kicks in when temperature approaches TC, leading to 

ferromagnetic phase with specific domain structures. When the sample is warmed up under 

an applied field (100 Oe in this case), the measured moment in the field direction (i.e., ZFC 

moment) is initially low at low temperature due to its large coercivity. In this temperature 

range, only regions which can respond to the external field will contribute to the measured 

magnetic moment. When temperature keeps increasing, coercivity of the sample will start to 

weaken, and at about 90 K, the external field will be able to align the magnetizations of all 

different regions (or domains) to the same direction, leading to a sharp increase of magnetic 

moment. The shapes of both the FC and ZFC curves are distinct from those of spin glass, 

weak ferromagnet, and/or paramagnet. Third, as discussed in detail in Supplementary Note 
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S3, the temperature dependence of magnetization of these multilayers can be fitted well by 

using existing model developed for ferromagnet. The only additional consideration is the 

distribution of TC inside the multilayer, which is plausible considering the fact that magnetic 

properties of these samples are sensitive to the thicknesses of individual layers. The finite 

distribution of TC may have affected the shape of both ZFC and FC curves near TC and that of 

ZFC curves below 90 K.  

 

Supplementary Note S3: Temperature-dependence of magnetization 

As this is the first report on FeMn/Pt multilayer, it is of great importance to develop an 

understanding of its magnetic behavior through analysis of the temperature-dependence of 

magnetization. To this end, in this Supplementary Note, we first describe different models 

that can be possibly used to fit the M-T curves and then narrow it down to the one that most 

accurately describes the behavior of FeMn/Pt multilayers.  

A. Theoretical models 

The temperature-dependence of magnetic order parameter at low-temperature can be 

calculated from the spin-wave dispersion relation. Spin waves are elementary excitations in 

magnetic materials at finite temperature. The quantized spin waves are magnons. Associated 

with each magnon is a magnetic moment gB, and therefore the total moment of magnon is 

given by 

                 (S1) 
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where g is the electron g-factor, B is the Bohr magneton, ħ is the reduced Planck’s constant, 

k is the magnon frequency, and kB is the Boltzmann’s constant. If we take into account the 

exchange interaction only, in the long wavelength limit, the magnon dispersion relation may 

in general be written as   n

k Dk , where D is the spin-wave stiffness, and n = 2 for a 

ferromagnet and n = 1 for an antiferromagnet (AFM). Substitute the dispersion relation into 

Supplementary Equation (S1), one has   

 
 
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    


                                (S2) 

where  is the Riemann zeta function and  is the Gamma function. Supplementary Equation 

(S2) can be used to calculate the temperature dependence of magnetization in FM or stagger 

order parameter in AFM. 

 

(i) Ferromagnet 

In the case of FM, n = 2, i.e., . Substituting n = 2 into Supplementary Equation 

(S2) leads to the Bloch T3/2 law:  

 
3/2

3/2( ) (0)(1 )M T M B T                           (S3) 

where B3/2 is a constant proportional to D-3/2. The Bloch T3/2 law fails at high temperature 

because of the neglect of magnon-magnon interactions and deviation of the dispersion 

relation from 
 
at large k. For a Heisenberg ferromagnet, the high-temperature 

effect can be included in M(T) by introducing a temperature-dependent D, namely, 
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5/2

5/2( ) (0)(1 )D T D B T  , where B5/2 is a constant3. As a result, the M(T) in a wide 

temperature range can be modelled by: 

3/2

3/2 5/2

5/2

( ) (0) 1
1

T
M T M B

B T

  
    
   

              (S4) 

When B5/2 is small, M(T) can be approximated as 

3/2 4

3/2 3/2 5/2

3
( ) (0) 1

2
M T M B T B B T

 
   

 
             (S5) 

 

(ii) Antiferromagnet 

Magnon in AFM has a linear dispersion, i.e., n = 1. Substituting 
 
into 

Supplementary Equation (S2) leads to a T3 dependence of the staggered order parameter 

  

3

3( ) (0)(1 )T B T                              (S6) 

where B3 is a constant. A same temperature dependence is expected for the magnetization of 

AFM with uncompensated spins, i.e., 

     3

3( ) (0)(1- )AFM AFMM T M B T                     (S7) 

 

(iii) Ferrimagnet 

An ultrathin AFM sandwiched between non-magnetic layers may be treated as a ferrimagnet. 

In this case, the magnon dispersion in the long wavelength limit consists of both a quadratic 
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and a linear term. The former is dominant at low temperature, and the latter plays a more 

important role at high temperature3. Since the two modes are non-degenerate from each other, 

one expects from Supplementary Equations (S1) and (S2) that the temperature-dependence of 

the net magnetization, , falls between T3/2 and T3, depending on the 

temperature. For simplicity, one may just divide the temperature into two regions and write 

the Mferri(T) as follows: 

3/2 3

3/2 3/2 0 3 3 0( ) (0)(1 ) ( ) (0)(1 ) ( )ferriM T M B T T T M B T T T                   (S8) 

where  is a step function and T0 is a temperature below which FM-like dispersion dominates 

the magnon spectrum. 

We have tried to fit all the M-T curves using Supplementary Equation (S5) and 

Supplementary Equation (S8). Although overall Supplementary Equation (S8) gives better 

fitting results, the deviation tends to become large near TC for both cases.  

 

B. Semi-empirical models 

Recently, a semi-empirical model developed by M. D. Kuz`min4 turned out to be very 

successful in fitting the M-T curves of many different types of magnetic materials. According 

to this model, the temperature-dependent magnetization of a ferromagnet is given by: 

    

3/2 5/2

( ) (0) 1 (1 )



    
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     C C

T T
M T M s s

T T
          (S9) 
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where M(0) is the magnetization at zero temperature, TC is the Curie temperature, s is a fitting 

constant, and  is the critical exponent whose value is determined by the universality class of 

the material: 0.125 for two-dimensional Ising, 0.325 for three-dimensional (3D) Ising, 0.346 

for 3D XY, 0.365 for 3D Heisenberg, and 0.5 for mean-field theory5,6. On the other hand, for 

surface magnetism,  is in the range of 0.75-0.89 (ref. 7). As shown in Supplementary Fig. S4, 

all the curves can be fitted reasonably well using Supplementary Equation (S9) with  values 

in the range of 0.68 – 0.9. It seems to suggest that the M-T of FeMn/Pt multilayers follows 

the surface scaling behavior. However, our samples are several nanometers in thickness, 

which shall not fall into the category of surface magnetism. As shown in Fig. 1 of the main 

text, the Curie temperature of FeMn/Pt multilayers is sensitive to the individual layer 

thickness; therefore, it is plausible to assume that there is a finite distribution of Curie 

temperature in the multilayer sample. If we assume that TC follows a normal distribution, the 

M-T curve can be obtained as 
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where TC0 is the mean value of TC and TC is its standard deviation. As shown in 

Supplementary Fig. S5, all the M-T curves can be fitted very well using Supplementary 

Equation (S10), especially near the TC region. The fitting parameters, s, TC, and TC0, are listed 

in Supplementary Table S2. In all the fittings,  is fixed at 0.365. The fitted distribution width 

of TC agrees well with the experimentally obtained TC for multilayers with different thickness 

combinations (Fig. 1 of main text); this suggests that Supplementary Equation (S10) 
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represents the true behavior of the multilayer sample. In other words, the 3D Heisenberg 

model describes well the critical behavior of the multilayer.   

 

Supplementary Note S4: Simulation of magnetoresistance curve by taking into account 

both AMR and UCMR 

As defined in the main text, the AMR and UCMR are given by 
2

0 ( )AMR m j      

and
2

0 [ ( )]UCMR m z j      , respectively, where m  and j are unit vectors in the 

direction of magnetization and current, respectively, z  denotes the normal of multilayer stack, 

0  is the isotropic longitudinal resistivity, and  AMR ( ) UCMR represents the size of the 

AMR (UCMR) effect. The total MR is given by: 

    
2 2 2 2

0 sin cos sin sinAMR UCMR         
 
                                                   (S11) 

where φ is the angle between the magnetization and positive x-direction and θ is the angle 

between the magnetization and positive z-direction. Hence the MR ratio is given by: 

  2 2 2 20

0 0 0

sin cos sin sinUCMRAMR
  

   
  

 
                                                       (S12) 

In order to calculate the overall MR, one has to find the equilibrium values for  and φ at 

different applied field. To account for the possible misalignment of external field from z-

direction, we use following expression for the external field:   

       ( sin cos , sin sin , cos )    H H H H         (S13) 
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here γ and χ are the misalignment polar and azimuth angles, respectively. By taking into 

account the Zeeman energy, anisotropy energy and demagnetizing energy, the energy density 

(normalized to saturation magnetization) is given by    

           

2 2 2cos (sin cos sin cos sin sin sin sin cos cos ) sin cos ( )
2 2

                   d KH H
H

               (S14) 

where  is the misalignment of effective easy axis from x-direction, 2 /k u sH K M  is the 

anisotropy field and Hd is the demagnetizing field. Supplementary Equation (S14) can be 

solved numerically to obtain the equilibrium angle φ and θ as a function of H. The MR ratio 

can then be calculated from Supplementary Equation (S12). In our samples, 
0  z

, where ρz 

is the longitudinal resistivity when the magnetization is aligned with the z-direction. By using 

5

0

3.85 10AMR




  and

4

0

7.91 10UCMR




   extracted from the experimental results in Fig. 2c 

of the main text, we obtained the simulated MR curves shown in Supplementary Fig. S7. The 

parameters used are: Hd = 2500 Oe (from Fig. 2f), α = -10°, γ = 0.1°, χ = -30°, -45°, -90° and 

Hk = 1 Oe. As can been from the figure, the “W-shape” MR curve can be reproduced well 

when there is a slight misalignment of H from the z-axis (γ). On the other hand, the 

misalignment in xy-plane (χ) changes the amplitude of the signal, but the overall shape still 

remains almost the same.  

 

Supplementary Note S5: Current-induced magnetization reversal under a bias field in 

y-direction 
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In order to confirm the -dependence of magnetization reversal as illustrated in Fig. 3d of the 

main text, we repeated the measurements by applying a bias field in y-direction. A field in +y 

direction should shift the whole current sweeping PHE curve towards the negative current 

side as it becomes easier for the positive current to switch the magnetization, and vice versa, 

a field in –y direction shifts the curves towards the positive current side. To verify this, we 

have carried out the additional experiments, and the results are shown in Supplementary Fig. 

S8a, in which the measured Hall bar device has a structure of 

Pt(1)/[FeMn(0.6)/Pt(0.6)]6/Ta(3)/SiO2/Si substrate. The Hall resistance is obtained by 

sweeping the current from 0 to 30 mA, then to -30 mA by passing zero, and finally back to 

zero under different external fields applied in y-direction. The shift of the curve to negative 

current direction under fields in +y direction and positive current direction under fields in –y 

direction field is clearly observed with the overall shape almost unchanged. These results 

demonstrate clearly that the magnetization of the multilayer device can be switched from one 

direction to its opposite, and then back to its initial direction reversibly (see the switching 

mechanism illustrated in Fig. 3d of the main text and detailed discussion in the Spin-orbit 

torque section). Based on the results in Supplementary Fig. S8a, positive current can switch 

the magnetization from +α to 180° + α while a negative current can switch it back, where α is 

the misalignment angle between the effective easy axis at the junction of Hall bar and the x-

axis, as illustrated in Fig. 3d of the main text. The reversible switching and steady-state 

magnetization direction can also be confirmed by repeating the same current sweeping 

measurement for just a half cycle in which pulsed current is swept from 0 to 30 mA (-30 mA) 

and then back to zero. As shown in Supplementary Fig. S8b, the magnetization is rotated by 
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180° by sweeping the current in the positive half cycle and after which the magnetization will 

remain at the steady-state, i.e., no magnetization reversal will occur by repeating the same 

half cycle of current sweeping (see Supplementary Fig. S8c). This is understandable because 

the first positive half cycle of current sweeping has switched the magnetization from α to 

180° + α, and therefore, the following repeated positive current sweeping can no longer 

switch the magnetization from 180° + α back to α. The same is also true for the negative 

current sweeping, as shown in Supplementary Fig. S8d and S8e. These results demonstrate 

clearly that the proposed mechanism in Fig. 3d of the main text corroborates well the 

experimental results. 

 

Supplementary Note S6: Simulation of current-induced magnetization reversal 

The energy density of the multilayer can be written as (normalized to saturation 

magnetization): 

      21
/ sin sin ( )

2
s FL kM H H                                                                           (S15) 

where HFL is the field-like effective field induced by the sweeping current, Ms is the 

saturation magnetization, φ is the angle between magnetization and x-direction, α is the 

misalignment angle of easy axis from x-direction, and 2 /k u sH K M  with Ku the anisotropy 

constant. The magnetization direction (φ) at different bias current can be obtained through 

energy minimization, which in turn can be used to calculate PHR sin 2 . Supplementary 

Figure S9 shows the simulation results by using the parameters Hk = 1 Oe, α = -10° and 
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HFL/jmul = 1×10-6 Oe/(A/cm2). The simulated planar Hall curves agree qualitatively with the 

experimental results shown in Fig. 3a,b,c.  

 

Supplementary Note S7: Extraction of HFL by second order PHE measurement 

Second order PHE measurements8,9 were performed using the measurement configuration 

shown in Supplementary Fig. S10a. The small transverse bias magnetic field Hbias was 

generated by a pair of Helmholtz coils. The planar Hall voltage was measured at different 

Hbias under a sweeping external magnetic field Hex in x-direction, and at a positive and a 

negative bias current, respectively. The second order planar Hall voltage was then calculated 

from the measured Hall voltages:        , ,   , ,xy bias xy bias ex xy bias exV H V H I H V H I H       . 

Under the small perturbation limit,   –xy bias FL Oe biasV H H H H   , where HOe is Oersted 

field. Supplementary Figure S10b shows one set of second order PHE voltage curves with 

bias current of 10 mA at different Hbias (0, +0.5 and -0.5 Oe). The different magnitude of the 

signal is attributed to the change of the total field in y-direction. As shown in Supplementary 

Fig. S10c, the ratio of the current induced effective field to the applied bias field 

( ( ) / 2  FL Oe biasH H H k ) can be determined by a linear regression algorithm through the 

linear fitting of  0 biasV H Oe   against [    0.5  0.5 bias biasV H Oe V H Oe     ]. 

Subsequently, by subtracting / 2Oe PtH I w , where IPt is the current flowing in the Pt layer, 

and w is the width of the layer, the HFL value at each bias current can be extracted. The HFL 

scales almost linearly with the current density in either the Pt layer or the multilayers. 
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Supplementary Note S8: “pseudo” bulk origin of SOT in the multilayer structure 

As FeMn is known to have a very small spin Hall angle10, when an in-plane charge current is 

applied to the sample, the spin current is mainly generated locally in the Pt layers due to its 

larger spin Hall angle (see the upper panel of Supplementary Fig. S12 for schematic θSH 

distribution in the thickness direction). The spin current generated by Pt is absorbed mainly 

by the uncompensated moment of neighboring FeMn layers. In the case of HM/FM bilayers 

with a HM thickness which is larger than its spin diffusion length, spin current flows in the 

vertical direction because of the spin accumulation inside the HM layer which is determined 

by both the reflection/scattering of spin at the surface and absorption/reflection/scattering at 

the HM/FM interface. Therefore, in principle, it is a non-local effect. The spin current will be 

very small when the HM thickness is comparable to or smaller than the spin diffusion length. 

In contrast, in the case of FeMn/Pt multilayers discussed in this work, the Pt thickness is 

about half of its spin diffusion length (~ 1.1 nm), therefore there is essentially no spin 

accumulation inside the Pt layer. The spin current generated by Pt is absorbed locally by the 

neighboring FeMn layer since the Pt and FeMn layers combined has a thickness comparable 

to that of the spin diffusion length in Pt. Self-absorption of spin current by the Pt layer itself 

can be ignored consider its small thickness and also much smaller magnetic moment as 

compared to that of FeMn (see the bottom panel of Supplementary Fig. S12 for schematic Ms 

distribution in the thickness direction). In addition to the difference between non-locality and 

locality, the FeMn/Pt multilayer also differs from the FM/HM bilayer in magnetic properties. 

In the former case, there is a global ferromagnetic ordering through the entire multilayers, 

whereas magnetic ordering in FM/HM bilayer is mostly confined inside the FM layer. Based 
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on three considerations, we may treat the SOT in FeMn/Pt multilayer as a “pseudo” bulk 

effect, so as to differentiate it from the bulk SOT effect observed in GaMnAs systems. It is 

worth pointing out again that the ultra-small thickness of Pt is the key for establishing global 

ferromagnetic ordering above room temperature. In a control sample of [FeMn(0.6)/Pt(1)]×5, 

due to the isolation of neighboring FeMn layers by the 1 nm Pt, no FM behavior has been 

observed at room temperature. Similarly, the increase of FeMn thickness also weakens the 

ferromagnetic property of the multilayer as a whole due to the enhancement of AFM order of 

FeMn.  

 

Supplementary Note S9: Estimation of HFL from SMR ratio  

If we treat the multilayer as a single layer heavy metal with a thickness d in z-direction, the 

spin current induced by a charge current jc in x-direction is given by: 

        
0( )

2


   z SH

s z s sj z j y
e

                                       (S16) 

where  is the electric conductivity, e is the electron charge, 
s is the spin accumulation, y is 

the unit vector in y-direction, and
0 SH

s SH cj j is the spin current from SHE with
SH the spin 

Hall angle and jc the charge current. Under the boundary conditions ( ) (0) 0z z

s sj d j  , the 

spin accumulation
s calculated from the drift-diffusion equation is given by 

0 0

2
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


   

 
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  

SH SH

s s s

e z z d d
j y j y                                            (S17) 

where  is the average spin diffusion length of the multilayer. Substituting Supplementary 

Equation (S17) into Supplementary Equation (S16), we obtain the spin current 
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As discussed in the main text, Supplementary Equation (S18) is valid only for a pure 

paramagnet like Pt where the spin relaxation is characterized by the spin-diffusion length . 

The situation is more complex for the multilayer as it consists of alternate Pt and FeMn layers. 

Furthermore, the multilayer as a whole is a ferromagnet. To capture the essential physics yet 

maintain its simplicity we assume that the spin current is mainly generated by the Pt layers 

and the FeMn layers simply function as a “spin-current valve” which absorbs the current 

completely when its magnetization (or magnetization of the entire multilayer) is transverse to 

the polarization of spin current and becomes transparent to the spin current when the they are 

parallel. We shall point out that the spin current is supposedly to be 100% reflected when the 

magnetization and spin current polarization are parallel with each other in FM/HM bilayers. 

This is unlikely the case here as the FeMn layers are extremely thin and the multilayer as a 

whole behaves like a single phase FM. Under this assumption, the maximum SMR can be 

estimated from the difference in spin current absorption between the two extreme cases, 

which is given by 

  

 0( ) sinh sinh sinh
  

 
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  

z SH

sy s

z z d d
j z j           (S19) 

 

After taking an average over thickness d, we obtain the charge current induced by ISHE: 
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Since
0

2
SH

s SH cj j
e

, the maximum SMR is estimated as 
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                            (S21)                                                             

Here,  is a parameter introduced to describe the efficiency of spin current absorption in 

realistic situations. If we use the following parameters:  = 0.5,   = 1.5 nm (0.5 nm – 10 nm 

for Pt in literature), d = 8.2 nm for Pt(1)/[FeMn(0.6)/Pt(0.6)]6, and 
xx

R

R


=0.0610% 

(experimental value extracted from Fig. 2d), we obtain a spin Hall angle 
SH = 0.058 for this 

sample. With this spin Hall angle, the damping-like effective field to current ratio is 

calculated as 
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where Ms is the saturation magnetization of the multilayer and μ0 is the permeability of 

vacuum. If we use the following parameters: 0 sM = 0.32 T (experimental results from M-T 

measurements), tFeMn = 3.6 nm (total thickness of FeMn) and SH = 0.058, we obtain a 

damping-like field to current ratio HDL/jc = 3.78×10-7 Oe/(A/cm2), which is comparable to the 

experimental value of 1.15×10-6 Oe/(A/cm2) for field-like effective field to current ratio of 

this sample. This is a reasonable estimation considering the fact that the field- and damping-
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like effective fields are on the same order in FM/HM bilayers9,11-13. We have to point out that 

only order of magnitude is important here as the values of  and  are not well established. 
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